Mini Project: Phylogenetic Analysis of Fungal 28S Sequences Background

The 28S region of rDNA is widely used as a DNA barcode for fungi. In this project, students will analyse 28S sequences from five fungal species, along with a set of unknown fungal sequences. The aim is to use phylogenetic approaches to determine which species the unknown belongs to, and to compare different tree-building methods.

Objectives

- Perform multiple sequence alignment (MSA) of fungal 28S sequences.
- Construct phylogenetic trees using Neighbour Joining (NJ), Maximum Likelihood (ML), and Minimum Evolution (ME) methods.
- Compare phylogenetic tree topologies across methods.
- Identify the most likely species for the unknown sequences.

Dataset Provided

FASTA file containing:

- 28S sequences from 5 known fungal species
- Several unknown 28S sequences to classify

Tasks

- 1. Load the sequences Import the FASTA file into MEGA
- 2. Multiple Sequence Alignment (MSA) Using ClustalW to align the 28S sequences.
- 3. Save the alignment file.
- 4. Phylogenetic Tree Construction: Build trees using three methods;
 - Neighbor Joining (NJ)
 - Maximum Likelihood (ML)
 - Minimum Evolution (ME)
- 5. Visualize each tree and annotate species names.

Analysis

- Compare the positions of the unknown sequences in each tree.
- Check if all methods agree on the classification of unknowns.
- Note any differences in tree topology between methods.

Expected Output

- 1. A ClustalW alignment file
- 2. Three phylogenetic trees (NJ, ML, ME)
- 3. A presentation including:
 - Figures of the phylogenetic trees
 - Identification of unknown sequences
 - Discussion of agreement/disagreement among methods

Author: Itunuoluwa Isewon PhD Email: itunu.isewon@covenantuniversity.edu.ng